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I. INTRODUCTION

Surface irregularities such as cavities, bumps and flares, etc., may all
be present in actual missile configurations. The resulting flow field for
these shapes is characterized by locally separated flow regions due to these
surface irregularities. Additionally, large separated flow regions exist
behind the base of the missile. These separated flow regions could have a
large affect on the missile aerodynamics. Fins and control surfaces are often
added to improve the stability. Proper location of these devices are crucial
in achieving full effectiveness. The control effectiveness of the fins or

., other control surfaces can be seriously degraded if they are located in
regions of large separated flow. A knowledge of the expected flow field and
the boundary layer properties can thus be very important in the initial design
phase. The Aerodynamics Technology Branch of the US Army Missile Laboratory
has requested numerical flow field data for a new missile design. Numerical
computations have been made for the requested missile geometry at M = 0.6.
The results of these computations are presented in this memorandum report.

II. COMPUTATIONAL TECHNIQUE

0 The Azimuthal Invariant (or Generalized Axisymmetric) thin-layer Navier-
Stokes equations for general spatial coordinates n, n, c can be written as'

a.%% ai a I

a q + -E + aG + H -Re~ aS (1)

where g =(x,y,z,t) is the longitudinal coordinate

n - n(y,z,t) is the circumferential coordinate

= (x,y,z,t) is the near normal coordinate

r = t is the time

and
P% )PU PW

Pu 0uU+ p  puW+c p

- j I pv , j- pvU xp : j -G xVW+ p

y
ow pwU+ pPwW+

Le (e+p)U-& tPj (e+p)W-¢tP

.. C. J..ietubiox, T. AI. PuZlim, and J. L. Stager, "Numerical Solution of
the Aximutha-Inuariant Navier-Stokea 9quatione," U.S. Army Balliatic
Reoearch Laboratory, Aberdeen Proving Ground, MaryZand, ARBRL-TR-02227,

* Varch 1980. (AD A085716) (A.ao see A1AA Paper No. 79-0070, January
'979.)
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4- 0~2

U(C C2 z )uC + (u/3)(cxu C + y + W4);

2 + -) v (-/3)( t u + R(W v t)4
x y x x yV z y

( 2 +C+ ;2)w+ (i/3)( u + v +zW
-x y z4 x; y ~ z 4z

S2* + 2 + 2)C( /2)(u 2 + V2 + w2) + mr-(y 1- (a2) J
y z

+ (u/3) (u +4 V + 4zw) (u + yV + C

The velocities

U = e u +  yV

V + 4n xUx  +  vnV + w (2)t x y z
W ~t + + y V + z W

represent the contravariant velocity components.

The Cartesian velocity components (u, v, w) are nondimensionalized with
r respect to a (free stream speed of sound). The density (p) is referenced to
p. and total energy (e) to p.az. The local pressure is determined using the

equation of state,

P = (y- 1)[e - 0.5p(u2  v2 4 w2)] (3)

where y Is the ratio of specific heats.

In Equation (1), axisymmetric flow assumptions have been made which result

in the source term, H. The details of how this is obtained can be found in
* Reference I and are not discussed here. Equation (1) contains only two

spatial derivatives. However, it retains all three momentum equations and
allows a degree of generality over the standard axisymmetric equations. In

3
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I. . . . . . . . . .

particular, the circumferential velocity is not assumed to be zero, thus
allowing computations for spinning projectiles to be accomplished.

The numerical algorithm used is the Beam-Warming fully implicit, approxi-
- mately factored finite difference scheme. The algorithm can be first or

second order accurate in time and second or fourth order accurate in space.
Since the interest is only in the steady-state solution, Equation (1) is
solved in a time asympotic fashion and first order accurate time differencing
is used. The spatial accuracy is fourth order. Details of the algorithm are
included in References 2-4.

For the computation of turbulent flows, a turbulence model must be sup-
.- plied. In the present calculations a two layer algebraic eddy viscosity model

by Baldwin and Lomax5 is used. In their two layer model the inner region
follows the Prandtl-Van Driest formulation. Their outer formulation can be
used in wakes as well as in attached and separated boundary layers. In both
the inner and outer formulations, the distribution of vorticity is used to
determine lenqth scales, thereby avoiding the necessity of finding the outer
edge of the boundary layer (or wake). The magnitude of the local vorticity
for the axisymmetric formulation is given by

Wu 1U 2 aDv aw +aw u

Iw1 = /(-)F + (E_-)z (3WX - .) (4)

In determining the outer length scale a function s

F(y) ; ywl [1 exp(-y+/A*)] (5)

was used.

The thin-layer Navier-Stokes computational technique described above was
used i conjunction with an unique flow field segmentation orocedure and a
computational capability 6 ? has been recently developed for predicting the

2. J. L. Stager, "ZThtiit Finite Difference Simulation of Flow About
,rbitrarj .eometree with Application to Aizrfoiis," AIAA Journal Ypl. 16
No. 7, July 1978, pp. 679-686.

3. 2'. .4. Pul.iam and j. L. Steger, "On ImpLiciC Finite-Differenrce Simulations
* of Three-Dimensional F7ow," AIAA Journal, Vol. 18, No. 2, February 1980,

pp. 159-167.

4. q. Beam and R. F. Warming, "An Implicit Factored Scheme for the Compres-
* sible Navier-Stokee Equations," AIAA Journal, Vol. 16, No. 4, April 1978,

* pp. 393-402.

• 5. 3. S. 3aldwin 2nd .. Lomax, 'Thin-Layer Aproximarion and Algebraic Vode
for SepTr d 7urbulent Fowe," AIAA Paper No. 79-257, 1978.

9
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flow field over a projectile including the base region flow. The flow field
segmentation procedure allows the complete numerical simulation of a projec-
tile. The details of this procedure can be found in References 6 and 7. This
code is used here to calculate the full flow field over a missile at M 0.6
and a = 0.

Ill. RESULTS

Numerical computations have been made at two Reynolds Numbers, Re = 4.2
x 106/ft and 3.0 x 106/ft for turbulent flow and Re = 4.2 x 1061ft for
laminar flow (total length, L = 23.63"). Solutions were marched in time until
the steady state results were achieved. The lengths shown in results are in
calibers (1 caliber = 2.66", the reference diameter).

Figure 1 shows an expanded view of the computational grid near the missile
which is approximately 9 calibers long. The grid consists of 201 points in
longitudinal direction and 50 points in the normal direction. The dark
regions result from grid clustering. These are the regions where the flow
variables are expected to change considerably. The expanded grid in the base
region is shown in Figure 2 and has been adapted to the wake shear layer as

* the solution developed. Computed results are now presented for the various
cases.

A. Case 1, Re - 4.2 x 106Ift (Turbulent Flow)

Figure 3 shows the velocity vectors in the regions where surface irregu-
larities are present and flow separation may occur. As seen in Figure 3(a)
there is a very thin region of reversed flow near the surface. Figure 3(b)
and (c) are expanded views of Figure 3(a). Figure 3(d) shows the velocity
vectors near the flare and again only a very thin separated flow region is
predicted near the missile surface.

Qualitative features of the base region flow field are shown in Figures 4-
7. Figure 4 is a plot of the velocity vectors and clearly shows the recircu-
latory flow in the near wake. Figure 5 shows the particle paths in the base
region and more clearly shows the separation bubble. Mach number and normal-
ized static temperature contour plots are shown in Figure 6 and 7, respec-
tively, and show the strong free shear layer. It is clear from Figure 6 that
the flow is subsonic everywhere in the base region.

6. .7. SahM, C. J. Nietubioz and J.L. Steger, ",umericaL 2ompuaion of 3a8e
'Zow for a Projectile at Transonic Speeds," U.S. Azrmy Ball tic Reaearch
Lboratory, Aberdeen Proving Ground, adryland, ARBRL-TR-02495, June :983.

*' ' (AD A130293) (AIoo ee AIAA Paper Yo. 82-1358, August 1982.)

7. J. Sahu, C. J. Ni.tubics and J. L. Steger, "?Iavier-Stokes Conputation. of
Projectile Baa. ?I~a with and without Base Injection," U.S. Army Balliatic
Research Laboratory, Aberdeen Proving ground, Maryland, ARBRL-TR-02532,

* Vovember 1983. (AD A135738) (Alao see AIAA Paper Vo. 33-0224, January
'983.)
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Quantitative results are presented in the form of pressure coefficient and
skin friction coefficient. Figure 8 shows the surface pressure distribution
as a function of the longitudinal position. The flow is subsonic everywhere
(Cp > C *) and the expansions and recompressions are observed at the cavity,

protuberance and flare as expected. The pressure distribution shown down-
stream of the base corner is along a line followng the shear layer. Figure 9
shows the skin friction coefficient distribution and clearly indicates the
reversed flow regions where Cf < 0.

B. Case 2, Re = 3.0 x 106/ft (Turbulent Flow)

The results for this case are essentially the same as those of the
* previous case. Small differences in the surface pressure distribution and

skin friction coefficient distribution are observed and these distributions
are shown in Figures 10 and 11. The differences are very small and usually
occur in the separated flow regions.

C. Case 3, Re = 4.2 x 106/ft (Laminar Flow)

Qualitative features of the base region flow field for the laminar flow
case are shown in Figures 12-15. Although small differences can be observed,
the extent and size of the wake separation bubble remains essentially the same
as for the turbulent case. Significant differences in the flow field, how-
ever, occur in the regions of the cavity, protuberance and the flare and are
shown in Figures 16-19. Figures 16 and 17 show the velocity vectors in these
regions and the large separated flow regions are evident. Figures 18 and 19
are stream function contour plots for the same regions and more clearly show
the reversed flow. These stream function plots clearly show the separation
and reattachment points.

Quantitatively, the surface pressure and the skin friction coefficient
distributions are shown in Figures 20 and 21, respectively. As seen in Figure
20, the expansions and the compressions are weak compared to the turbulent
case. The magnitude of the skin coefficient shown in Figure 21 is consider-
ably lower than for the turbulent case (Figure 9). Additionally, larger
regions of separated flow are clearly seen (Cf < 0).

As part of the missile design, fins are located at X/D - 8.306. The flow
field at this location is of considerable importance to the Aerodynamic
Technology Branch of the US Army Missile Command. The flow field requested is
in terms of plots and tabular data of density, velocity, stitic pressure and
dynamic pressure profiles. Figures 22-26 show the profiles of density, velo-
city components in streamwise and normal directions, static and dynamic pres-
sures respectively. The tabular data of these profiles are included in Table
I and includes the following variables:

Z/D normal distance measured from the surface
RHO/RINF non-dimensional density
U/UINF non-dimensional x-component of velocity
W/UINF non-dimensional y-component of velocity
P/PINF non-dimensional static Dressure
Q/QINF non-dimensional dynamic pressure

iA



where 0 is the reference diameter and RINF, UNIF, PINF and QINF are the free
stream values for density, velocity, static pressure and dynamic pressure
respectively.

IV. CONCLUDING REMARKS

A thin-layer Navier-Stakes code has been, used to compute the entire flow
field about a missile configuration of interest to the Aerodynamics Technology
Branch of the US Army Missile Laboratory. Numerical computations have been
made at M x 0.6 and a - 0 and for both laminar and turbulent flow condi-
tions. Turbulent flow computations indicate very thin regions of separated
flow near the missile surface in the neighborhood of the irregularities in
surface geometry. The laminar case predicts muach larger separated flow re-
gions in the same areas. The flow field in terms of plots and tabular data of
density, velocity, static pressure and dynamic pressure at the location of
fins are also included.

x1



a~I

0-

-2.0 0.0 2.0 4.0 63. 0 80 1
x

Fi gure 1. Expanded View of the Grid Near the Missile

1

Q

.°.

.... .



R, .W. ..:,- -- 1-- - -

,I%:, " - _ - - -

8.00 8.25 6.50 8.75 9.00 9.25 9.50 9.75 10.0

Figure 2. Expanded View of the Grid in the Base Region

V.1

?- -. 14

,.... +-. -



4.N4

4

115



0-

0 . sa 2 4 .

0igr . otne

Fiur 3. Continued

K 16



-" , r --

4 ' ' .6 .8 e l0 5 ,O2 5 4 5 . S .8 0 .

* 0

"..,Fi gure 3. Continued
or c. 4.6 4 X 4 6.0

.[.,.,17
'*

I.

J*."L

0 a i



*~! ;

0i

0l

w~

di

7. .5 . - . .

C--

Figr .. otne

7.4 ~ d 7.6 7. 8. 8. 8..8.

'V 18

A- P



LmI

100 1.

Figr . Vlct etr nBs ein0 , 0

Rex42 0/t Tr

I "-nt

19I



UI

C-

8.0 8.5 9.0 9.S 10.0 10.5 1.

Figure 5. Particle Paths in Base Region, M = 0.6, =0,

Re 4.2 x lO6fft (Turbulent)

20



-0.461

0.,0

.34

8.0 8.5 9.0 9.5 10.0 10.5 11.0

Figure 6. Mach Number Contours in Base Region, M. 0.5, ~i=0,
Re a 4.2 x J106/ft (Turbulent)

21

Il



00

~1.02

8.0 8.5 9.0 9.5 16.0 16.5 11.0
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Table 1. Flow Field Data at X/D a8.306

4.' Z/D RHO/R3IF U/IlNF W/UF P/PIN Q/Q.IF

0.00000 1.03619 0.00000 0.00000 1.03619 0.00000
.00004 1.03321 .01940 .00399 1.03619 .00041
.00008 1.02994 .04105 .00845 1.03619 .00181
.00014 1.02614 .06646 .01368 1.03618 .00472
.00022 1.02179 .09581 .01971 1.03617 .00978
.00031 1.01705 •12779 .02628 1.03615 .01731
.00044 1.01223 .16018 .03291 1.03612 .02707
•00060 100763 •19064 .03911 1.03605 .03816
.. •00080 1.00347 .21754 .04450 1.03594 .04948
..00107 .99982 .24027 .04893 1•03577 .06011
.•00141 .99671 .25912 .05247 1.03557 .06966
.00186 .99411 .271488 .05533 1.03538 .07816
.00243 .99203 .28850 .05777 1.03528 .08588
.00316 .99043 .30083 .05996 1.03532 .09319
.00412 .98925 .31256 .06196 1.03543 .10045
.00534 .98842 .32427 .06376 1.03556 .10795
•.00692 .987r87 .33641 .06532 1.03565 •11601
.00896 .98757 .34938 .06663 1.03571 .12493
.01159 .98750 .36353 .06768 1.03573 .13503
.01498 .98763 .37912 .06841 1•03572 .11657
.01935 .98791 .39634 .06872 1.03566 .15986
.02198 .98831 .41548 .06848 1.03553 .17524
.03225 .98883 .43716 .06759 1.03532 .19349
.04160 .98952 .146264 .06604 1.03504 .21611
.05365 .99052 .49394 .06390 1.03469 .214571
.06918 .99203 .53343 .06131 1.03425 .28601
.08919 .99419 .58291 .05838 1.03358 .34120
.11505 .99075 .64250 .05515 1.03246 .41462
.14870 1.00043 .70988 .05158 1.03055 .5o681
.19295 1.00391 78045 .0 T59 1.02760 .61376
.25183 1.00689 .84828 .04315 1.02356 •72641
.33023 1.00881 .90762 .03826 1.01865 .83251
.43323 1.00928 .95441 .03294 1.01331 .92045
.56605 1.00828 •98713 .02722 1.00806 .98324
73528 1.00618 1.00682 .02126 1.00334 1.02041
.95004 1.00359 1.01638 .01532 .99948 1.03698

1.22291 1.00118 1.01942 .00978 .99667 1.014054
1.5"059 .99939 1.01919 .00504 .99493 1.03813
2.01496 .99842 1.01790 .00139 .99415 1.03449
2.58137 .99817 1.01668 -.00111 .99411 1.03175
3.311445 .99840 1.01579 -.00260 .99452 1.03019
4.24764 .99881 1.01509 -.00336 .99512 1.02918
5.43206 .99917 1.01431 -.00368 .99569 1.02798
6.92126 .99938 1.01325 -.003T5 .99615 1.02605
8.77616 .99943 1.01181 -.00366 .99653 1.02319

/4;. 11.06881 .99939 1.00998 -.00340 .99689 1.01945
13.88611 .99937 1.00778 -.00291 .99738 1.01500
17.33081 .99946 1.00531 -.00214 .99807 1.01011
21.52252 .99968 1.00267 -.00113 .99897 1.00503
26.60690 1.00000 1.00000 0.00000 1.00000 1.00000
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